Logo


Home
Biophysical Motivation
Installation
Quick Start Jupyter Notebook
Quick Start command line
Examples
Publications

Modeling the early events in signaling by the epidermal growth factor receptor (EGFR), Blinov et al., 2006

It is recommended that you run Jupyter notebook - it has all the text below. This page is given just for convenience of those who don’t have an opportunity to run notebook

from NFsim_data_analyzer import *
from DataViz_NFsim import * 
from MultiRun_BNG import * 

This model has multi-molecular complex as initial conditions

# bngl file (BioNetGen model) 
bng_file = './test_dataset/EGFR_model.bngl'

# run multiple trials
simObj = BNG_multiTrials(bng_file, t_end=20, steps=20, numRuns=20)
print(simObj)
simObj.runTrials(delSim=False)
print()
***** // ***** 
Class : BNG_multiTrials
File Path : ./test_dataset/EGFR_model.bngl

t_end : 20 seconds 	 output_steps : 20
Number of runs: 20

Molecules: ['Grb2', 'Shc', 'Sos', 'egf', 'egfr']
Number of binding sites: [2, 2, 1, 1, 4]
Species Counts: [120.0, 10.0, 27.0, 13.0, 180.0, 49.0]

*** WARNING ***
Number of species is different than number of molecular types!
In case you have multi-molecular species as your initial condition, please provide total counts of each molecular types for subsequent analysis!

NFsim progress : [****************************************] 100%
Execution time : 14.7578 seconds
# analyze data across multiple trials
outpath = simObj.getOutPath()
molecules, numSite, counts, _ = simObj.getMolecules()
nfsObj = NFSim_output_analyzer(outpath)
nfsObj.process_gdatfiles()
#nfsObj.process_speciesfiles(molecules, counts=counts, valency=numSite) # will give an error
nfsObj.process_speciesfiles(molecules, counts=[59,27,62,120,180], valency=numSite)
Processing gdat_files : [****************************************] 100%

Observables:  {0: 'time', 1: 'Dimers', 2: 'Sos_act', 3: 'RP', 4: 'Shc_Grb', 5: 'Shc_Grb_Sos', 6: 'R_Grb2', 7: 'R_Shc', 8: 'R_ShcP', 9: 'ShcP', 10: 'R_G_S', 11: 'R_S_G_S', 12: 'Efgr_total', 13: 'Shc_total', 14: 'Sos_total', 15: 'Grb2_total'}

Processing species_files : [****************************************] 100%

Visualization

plotTimeCourse(outpath, obsList=[1,5,11])

png

2. Plot system level quantities

# 2A: Cluster size distribution (ACO: Average Cluster Occupancy)
plotClusterDist(outpath)
# You can plot a binned distribution by providing cluster size ranges
plotClusterDist(outpath, sizeRange=[1,10])

png

png

# 2B: Number of bonds per molecule
plotBondsPerMolecule(outpath)
# 2C: Bound fraction distribution
plotBoundFraction(outpath)

png

png

3. Plot molecule specific quantities

# 3A. Average composition of indivual clusters. 
# Default is all the clusters present in the system. As before, adjust width and transparency (alpha) for visual clarity.
plotClusterComposition(outpath, specialClusters=[], width=0.15, alpha=0.5)

# You can look at the composition of a set of clusters (specialClusters) also
plotClusterComposition(outpath, specialClusters=[4, 6, 7], width=0.15, alpha=0.5)

png

png

# 3B. Bondcount distribution of each molecular type 
# You may provide a subset of molecules also
plotBondCounts(outpath, molecules=['egfr'])

png